解直角三角形(1)

同步教学

一、一周知识概述

  本周主要学习第十九章解直角三角形中的第一节测量,第二节勾股定理,第三节锐角三角函数 . 通过学习要求:

1、从实际生活需要入手,利用已学过相似三角形的性质,掌握一些实际生活测量问题的方法 .

2、掌握勾股定理的探索证明过程,并会运用它,解决已知直角三角形任意两条边的长求第三边长的问题 .

3、了解锐角三角函数的概念,能够正确地用 sinα, cosα, tanα, cot α表示直角三角形中两边的比,并会由已知某角的一个三角函数值求其他三个三角函数值 .

4、熟记 30°, 45° 60°角的三角函数值 . 会计算含有特殊角的三角函数式的值 . 会由一个特殊锐角的三角函数值,求出它对应的角度 .

5、会利用计算器求锐角三角函数值,并由三角函数值求对应的锐角 .

二、重难点知识概述

1、在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解 .


2、勾股定理

直角三角形两直角边的平方和等于斜边的平方 .

3、勾股定理应用

(1)已知直角三角形两边的长,求出第三边的长;

(2)作出长为(n 为自然数)的线段;

(3)解决线段平方式转换问题 .

4、注意的问题

(1)勾股定理的前提是直角三角形;

(2)求解问题中常列方程或方程组来求解;

(3)已知直角三角形中两条边的长,求第三边的长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论 .

5、锐角 A 的三角函数

6、 0<sinA<1 , 0<cosA<1 ,


7、由三角函数定义有 sin2A+cos2A=1 ,于是,已知一个角的正(余)弦值,就可以求它的余(正)弦值 .


8、注意的问题

(1)一个锐角的三角函数值只与这个锐角的大小有关,是一个确定值 .

(2)30°和 60°的三角函数值易混淆,可根据正弦、正切是增函数,余弦、余切是减函数来区别 .

本周学习的重点是:

1、勾股定理及其应用,勾股定理是解几何中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在数学中,而且在其他自然学科中也被广泛应用 .

2、锐角三角函数定义,特殊角的三角函数值 .

本周学习的难点是:

1、勾股定理的证明,勾股定理的证明方法有多种,课本是通过构造图形,利用面积相等来证明的 .

2、锐角三角函数值的求解 .

三、例题点评

例 1、如图,学校的围墙外有一旗杆 AB ,甲在操场上 C 处,直立 3m 高的竹竿 CD ;乙从 C 处退到 E 处恰好看到竹竿顶端 D 与旗杆顶端 B 重合,量得 CE=3m ,乙的眼睛到地面的距离 FE=1.5m ;丙在C1 处也直立 3m 高的竹竿 C1D1 ,乙从 E 处退后 6m 到 E1 处,恰好看到两根竹竿和旗杆重合,且竹竿顶端 D1 与旗杆顶端 B 也重合 . 量得 C1E1=4m. 求旗杆 AB 的高 .

[分析与解]

例 2、已知,如图所示,折叠矩形的一边 AD ,使点 D 落在 BC 边的 F 处,已知: AB=8cm , BC=10cm ,求 EC 的长 .

[分析与解]

例 3、求适合下列各式的锐角

(1) 2sinα=1     (2) 2cosα

(3) 2cotαsinα=(4) tan2α(1+)tanα+=0

(5) 3cot(α- 10°)=

[分析与解]

- 返回 -